22nd Annual Conference of the Saudi Heart Association
Riyadh, Saudi Arabia

Echocardiographic Evaluation of Right Ventricular Function in Congenital Heart Disease

Benjamin W Eidem, MD, FACC, FASE
Professor of Pediatrics & Medicine
Divisions of Pediatric Cardiology & Cardiovascular Diseases
Mayo Clinic

No Disclosures
Assessment of RV Function

Objectives

- Review common non-invasive methods of RV functional assessment
 - 2-dimensional & 3-dimensional imaging
 - Doppler-derived indices
- Advantages & limitations of quantitative RV assessment
- Emerging techniques to improve functional assessment of RV performance
Right Ventricular Function

Background

• Knowledge of RV function lags behind LV

• Increased recognition of importance of RV dysfunction in CV disease

• Challenges in the quantitative assessment of RV structure & function

• Publications (to present)
 • LV function (23,769)
 • RV function (2,927)

Redington A, Cardiol Clin 2002
Right Ventricular Function

Background

- **RV Anatomy & Function**
 - Chamber geometry is complex
 - Inlet (sinus)
 - Outlet (conus)
 - Longitudinal > radial shortening
 - RV - LV interactions
 - Shared wall → IVS
 - Mutually encircling epicardial fibers
 - Share pericardial space
Right Ventricular Function

Background

- **RV Physiology**
 - RV cardiac output = LV cardiac output
 - Very different vascular beds
 - RV external work is 25% of LV work
 - Different pressure - volume relationships
 - RV is very efficient system
 - Critically dependent upon low hydraulic impedance of normal pulmonary vascular bed
Right Ventricular Function

Background

- LV is a “square wave” pump
- RV performs under different pressure-volume conditions
 - RV ejection very efficient
 - Begins early during pressure rise
 - Occurs beyond development of peak RV pressure
 - Continues as RV pressure falls

Redington A, Cardiol Clin 2002
Right Ventricular Function
Echocardiographic Assessment

- Unique challenges with morphologic RV
 - Geometry
 - Anatomic location
 - Different hemodynamics compared to LV
 - Beat-to-beat changes with respiration
 - Pulmonary vs systemic vascular bed
 - Right - left heart interaction
Evaluation of Ventricular Function

Congenital Heart Disease

Challenges in congenital heart disease

• Complex anatomy
• Variable loading conditions
• Regional myocardial function
• RV function as relevant as LV function
Assessment of RV Function
Qualitative Visual Assessment
Evaluation of Congenital Heart Disease

Segmental Approach

- **Situs & Position**
- **Systemic & Pulmonary Venous Connections**
- **Atrial & AV Connection**
- **Ventricular morphology**
- **VA Connection**
- **Great Arteries**

Hypoplastic Left Heart
Assessment of Left Ventricular Function

Segmental Approach

<table>
<thead>
<tr>
<th>LV systolic function</th>
<th>LV global function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LVSF % and LVEF %</td>
<td>• Myocardial</td>
</tr>
<tr>
<td>• Stress-velocity index</td>
<td>performance index</td>
</tr>
<tr>
<td>• LV dP / dt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV diastolic function</th>
<th>LV longitudinal function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mitral inflow Doppler</td>
<td>• Tissue Doppler</td>
</tr>
<tr>
<td>• Pulmonary venous Doppler</td>
<td></td>
</tr>
<tr>
<td>• Color flow propagation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV regional function</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strain and strain rate</td>
<td>Myocardial twist & torsion</td>
</tr>
</tbody>
</table>
Assessment of Right Ventricular Function
Segmental Approach

RV systolic function
- RV FAC and RVEF %
- RV dP / dt
- TAPSE

RV diastolic function
- Tricuspid inflow Doppler
- Hepatic venous Doppler
- RVOT Doppler

RV global function
- Myocardial performance index
- 3-D Echo

RV longitudinal function
- Tissue Doppler

RV regional function
- Strain and strain rate

Cardiac MRI
Evaluation of RV Function

RV Fractional Area & Volume Change

- 2-Dimensional Analysis
 - Single plane method
 - Biplane volume methods
 - Area - length method
 - Simpson’s method
 - A4C + Subcostal 4C
- Limitations = many
 - Geometric
 - Anterior RV free wall
 - Inclusion of RVOT
Assessment of RV Function
3-Dimensional Echocardiography

- **RV Assessment**
 - Volume
 - EDV
 - ESV
 - Stroke volume
 - RV EF %

Courtesy Phillips & G Shirali
Assessment of RV Function
3-Dimensional Echocardiography

Advantages
- Quantitative
- Global function
- Incorporates RV inflow & outflow
- No geometric limitations
- Reproducible
- Close correlation with MRI volumes

Limitations
- Availability
- Image quality
- Learning curve
- Load dependent
- Regional function
Assessment of RV Function
Doppler Echocardiography

- Challenges in Assessment of RV physiology
 - **Respiratory variation**
 - Doppler measurements ↑ 5-10% with inspiration
 - PA systolic velocity & RVOT gradient
 - TR velocity
 - Tricuspid inflow Doppler
 - Inability to detect small changes in RV status
Assessment of RV Function

RV dP / dt

- Rate of rise of RV systolic pressure (dP / dt)
 - Velocity curve transferred to pressure gradient curve via modified Bernoulli equation (mean dP / dT)
 - LV > 1200 mmHg / sec
 - RV > 400 mmHg / sec
Assessment of RV Function

RV dP / dt

• **Advantages**
 - Doppler-derived
 - Reproducible
 - Global function
 - Clinical outcome

• **Limitations**
 - Signal quality
 - Signal availability
 - Normal values
 - Load dependent

RV dP / dt = 640 mmHg / sec
Evaluation of RV Function
Visual RV Function

8 yo critical PS s/p RVOT reconstruction
Assessment of RV Function

RV Fractional Area & Volume Change

RV FAC = 42%
Assessment of RV Function

RV Diastolic Function

Forward flow with atrial systole
Assessment of RV Diastolic Function
Doppler Echocardiography

- Assessment of RV physiology - Challenges
 - RV is an “open” system in diastole
 - Restrictive RV → conduit
 - Antegrade diastolic forward flow into PA during atrial systole
Assessment of RV Function

Myocardial Performance Index

- **Doppler-derived index**
- Ratio of total time spent in isovolumic activity divided by the time spent in ventricular ejection
- **Increasing values** of the MPI indicate worsening global ventricular function
- MPI has high correlation with cath invasive measurements (+) dP/dT, (-) dP/dT, tau
- Correlation with outcome

\[
\text{MPI} = \frac{a-b}{b} = \frac{(\text{ICT} + \text{IRT})}{\text{ET}}
\]
Assessment of RV Function
Myocardial Performance Index (n=243)

- Clinical Outcome
 - LV dysfunction
 - DCM / HCM / ICM
 - AMI
 - Amyloidosis
 - Valvar diseases
 - Systemic diseases
 - OHT rejection
- RV dysfunction
 - Pulmonary hypertension
 - Pulmonary embolism
 - Systemic diseases

- Clinical Outcome
 - Congenital heart disease
 - Ebstein anomaly
 - ASD, PS
 - D-TGA, CC-TGA
 - TOF, VSD
 - Acquired heart disease
 - Anthracyclines
 - Fetal heart disease
 - CHF, ductal constriction
 - Functional class
 - Exercise performance
 - Response to medical & surgical therapy
Assessment of RV Function
Myocardial Performance Index

- **Normal LV Values**
 - Fetal: 0.36 +/- 0.06
 - Peds: 0.35 +/- 0.03
 - Adult: 0.39 +/- 0.05

- **Normal RV Values**
 - Fetal: 0.35 +/- 0.05
 - Peds: 0.32 +/- 0.03
 - Adult: 0.28 +/- 0.04
Assessment of RV Function
Myocardial Performance Index

- **Advantages**
 - Doppler-derived
 - Simple to perform
 - Reproducible
 - Non-geometric
 - Global function
 - Clinical outcome

- **Limitations**
 - Non-simultaneous acquisition
 - Rhythm
 - Load dependent
 - HR, age, BSA dependent
 - Non-specific
 - Systole vs diastole
 - Pseudo-normalization
Evaluation of Ventricular Function

New Modalities

Tissue Doppler

Strain & strain rate imaging
Tissue Doppler Imaging

Systole

Peak systole

IVC

IVRT

Diastole

E

A

20 cm/s

20 cm/s
Pulsed Wave Tissue Doppler
Longitudinal Velocities

Lateral mitral annulus

Septal annulus

Tricuspid annulus
Assessment of RV Function

Tissue Doppler (n = 9,491)

- Clinical Outcome
 - LV dysfunction
 - HCM / DCM / ICM / LVNC
 - Hypertension
 - Rhythm disorders
 - Amyloidosis
 - Valvar diseases
 - Systemic diseases
 - OHT rejection
 - Obesity
 - RV dysfunction
 - Pulmonary hypertension
 - ARVD
 - Pulmonary fibrosis
 - Sleep apnea
 - Systemic diseases

- Clinical Outcome
 - Congenital heart disease
 - ASD / VSD / PDA
 - Valvar diseases
 - D-TGA, CC-TGA
 - UVH
 - Post op CHD
 - Eisenmenger / ACHD
 - Fetal heart Disease
 - CHF
 - Hydrops / Extracardiac
 - Exercise Performance
 - Post-operative Outcome
 - Loading Conditions
 - Preload
 - Afterload
Assessment of RV Function

Tissue Doppler

Advantages
- Doppler-derived
- Quantitative
 - Systolic
 - Diastolic
- Myocardial
- Less load dependent
- Longitudinal & radial function
- Early identification of RV dysfunction
- Clinical outcome

Limitations
- Angle dependent
- Load dependent
- Cardiac tethering
- Cardiac translation
Strain Rate Imaging

Velocities

Natural Strain Rate

Natural Strain

\[\Delta r \]

\[v_1 \]

\[v_2 \]

Calculate spatial gradient

Integrate temporally

Strain (rate) estimation = velocity estimation + post processing
Strain Rate Imaging
Longitudinal Function

- Shortening
- Lengthening

Peak systolic strain rate

Peak systolic strain

Strain rate (sec\(^{-1}\))

Strain (%)

SYS
DIAST
Strain Rate Imaging
Postoperative Tetralogy of Fallot

- Variable degree of pulmonary regurgitation
- Can lead to RV dilatation and dysfunction
- Pulmonary valve replacement ??
Tetralogy of Fallot

RV Longitudinal Function

Velocity (cm/s)

Strain rate (s⁻¹)

Strain (%)

Normals

TOF

*P<0.001

Weidemann F: AJC, 2002
Effect of PR on Strain & SR

Strain RV base (%)

PR fraction (%) 0 20 40 60 80

Strain rate RV base/sec

PR fraction (%) 0 20 40 60 80

Eyskens B et al: AEPC, 2004

$r=-0.53$ $P<0.001$

$r=-0.35$ $P<0.01$
Assessment of RV Function
Strain & Strain Rate Imaging

• Advantages
 • Doppler-derived
 • Quantitative
 • Systolic
 • Diastolic
 • Myocardial
 • Less load dependent
 • Longitudinal & radial function
 • Early identification of RV dysfunction
 • Clinical outcome

• Limitations
 • Angle dependent
 • Load dependent
 • Aliasing
 • High frame rates
 • Data analysis
Evaluation of Ventricular Function

Speckle Tracking
Evaluation of Systemic RV Function
Pressure - Volume Relationship

RV Pressure - Volume Loop
LV Pressure - Volume Loop

Redington A, Cardiol Clin 2002
Evaluation of Systemic RV Function
Strain & Strain Rate

- Systemic RV
 - Circumferential > longitudinal RV strain
 - Similar to normal LV strain pattern

Petterson E, JACC 2007
Evaluation of Systemic RV Function
Ventricular Rotation & Torsion in D-TGA

- **Normal LV & RV**
 - Clockwise rotation of base
 - Counterclockwise rotation of apex

- **Systemic RV**
 - Absence of rotation
 - Absence of torsion

- **Sub-pulmonary LV**
 - ↓ rotation
 - ↓ torsion

Petterson E, JACC 2007
Evaluation of Systemic RV Function
Ventricular Rotation & Torsion in D-TGA

- **Systemic RV Function**
 - **Adaptive changes in systemic RV**
 - Shift from longitudinal \rightarrow circumferential shortening (not RV “dysfunction”)
 - $s_{RV} \rightarrow L V$ deformation pattern
 - **Myocardial dysfunction in systemic RV**
 - \downarrow strain rate
 - Absence of twist & torsion
 - \downarrow compensatory RV - LV interaction

Petterson E, JACC 2007
Assessment of RV Function
Cardiac MRI

Gold Standard
Assessment of RV Function

Cardiac MRI

Post-operative Tetralogy of Fallot
Assessment of RV Function
Cardiac MRI

- **Advantages**
 - Non-geometric
 - Quantitative global function
 - RV EF %
 - Gold standard
 - Reproducible
 - Clinical outcome
 - Emerging capabilities
 - Regional function
 - Shunt calculation
 - Regurgitant volume

- **Limitations**
 - Availability
 - Cost
 - Patient issues
 - Metallic devices
 - Access / portability
Assessment of RV Function

Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Available</th>
<th>Ease of Use</th>
<th>Reliability</th>
<th>Outcome</th>
<th>Regional Function</th>
<th>Loading Condition</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D FAC</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3D EF %</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Doppler</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>MPI</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>dP/dt</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TDI</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>IVA</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Strain/SR</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Torsion</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>MRI</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>
Assessment of Right Ventricular Function
Segmental Approach

RV systolic function
- RV FAC and RVEF %
- 3-D Echo
- RV dP / dt

RV diastolic function
- Tricuspid inflow Doppler
- Hepatic venous Doppler
- RVOT Doppler

RV global function
- Myocardial performance index

RV longitudinal function
- Tissue Doppler

RV regional function
- Strain and strain rate
- Twist & Torsion

Serial Evaluation