DIAGNOSTIC VALUE OF NITRATE ENHANCED Tc-99m SESTAMIBI GATED MYOCARDIAL SPECT IN MYOCARDIAL VIABILITY:
PROSPECTIVE ANALYSIS
Khan ZR, Syed A, Jelly AE, Obaiden AM, Altizaz S, Hafizullah M.

Zahid Rahman Khan, MD(USA), MS
Diplomate American Board of Nuclear Medicine
Consultant Nuclear Medicine
North West Armed Forces Hospital
Tabuk, KSA.
Introduction

Hibernation:

• Term coined by Rahimtoola¹.

• Chronically ischemic myocardium with decreased blood flow & down regulation of contractility; reversible with blood flow restoration².

• Meta-analysis 3088 patients (24 studies), annual mortality with ‘viability’ was 16% with medical tx & 3.3% with revascularization (p<0.0001)³.

Introduction

• The role of MIBI is well established in detection of severely ischemic but viable myocardium¹.

• Used alone Tc-99m MIBI may underestimate the viable myocardium²,³.

• Nitrates have been used to augment uptake of Tc tracers. It dilates epicardial vessels and flow through collateral vessels increase⁴.

Diagnostic techniques

- Myocardial Metabolism: **PET (FDG)**- Gold standard.
- Cell membrane integrity: **Rb & TI-201**.
- Cellular metabolism: **99mTc-MIBI & 99mTc-tetrophosmine** (Nitrates/trimetazidine enhanced).
- Contractility: **LDD Echo & LDD MRI**.
- Microvascular damage: **Delayed enhancement MRI**.

SPECT imaging with Tc-99m MIBI

- Diffuses across cell membrane & sequestered in mitochondria.
- Retention dependent on cell membrane integrity & mitochondrial function (depends on active metabolism).\(^1\)
- For hibernating myocardium Sensitivity (rest) : **80%**, Specificity: **60-70%**.\(^2\)
- **With nitrate** Sensitivity : **77-95%**, Specificity: **69-88%** in small groups of patients.\(^3\)

Aims and Objectives of the study

• To assess myocardial viability with nitrate enhanced Tc-99m sestamibi Gated Single Photon Emission Computed Tomography (GSPECT) in patients with coronary artery disease.

Materials and Methods

• A prospective study of 48 patients with known CAD & history of myocardial infarction was done from Jan 2009 to Jan 2010.

• Inclusion criteria
 1. Consecutive patients referred to Nuclear Cardiology section of Lady Reading Hospital Peshawar, Pakistan.
 2. History of MI.

• Exclusion criteria
 1. Hypotension.
Materials and Methods

- **99mTc-MIBI Gated SPECT:**

 1. **Patient preparation:**
 - Through explanation of procedure
 - H & P examination using a comprehensive proforma
 - Informed consent.

 2. **Pre-procedure pertinent information:**
 - Fasting for at least 4 hours.

 3. **Dose:**
 - 925-1,110 MBq (25-30mCi) 99mTc-MIBI, Intravenously.
 - Medi-MIBI 500µgm kit from Hungary was used.

Materials and methods

4. **Instrumentation:**
 - Large FOV Siemens gamma camera - eCAM signature series single head system with LEHR collimator.

 - Symmetric 15% energy window centered over the 140kev photopeak.

5. **Patient position:**
 - Supine.
Materials and methods

6. Imaging protocol (Two-day):
- **Baseline study**: RP @ rest and image acquisition @ 30-60min
- **Nitrate study**: Sublingual nitrates (1-2 tablets) & RP after 15 minutes. Image acquisition @ 30-60 minutes.

![Diagram of imaging protocol]

Materials and methods

7. Image processing:
- Data processing Syngo 2007A software.
- Short axis, vertical long axis and horizontal long axial slices obtained.
- Quantification & gated image acquisition- Corridor4DM v5.1 software applied.
Materials and methods

- Image interpretation of Tc-99m GSPECT:
 - Two independent observers interpreted the studies.
 - Conventional slice display of SPECT images was done.
 - Perfusion defect severity & extent evaluated with Semi-quantification method using 20 segment model.
 - Gated imaging quantified with Corridor4DM v5.1 software.

- Statistical analysis:
 - Paired t test.

Results

- Total of 48 patients (age range 24-82 years) were included. 39 males, 9 females.

- **960** segments evaluated
 - LAD: 480,
 - RCA: 192,
 - LCx: 288.
Results

Comparison of SPECT baseline and Nitrate enhanced study

<table>
<thead>
<tr>
<th>Territory</th>
<th>Segments</th>
<th>Baseline study (viable segments)</th>
<th>Nitrate study (viable segments)</th>
<th>%age improvement of viability with nitrates</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD</td>
<td>480</td>
<td>244</td>
<td>276</td>
<td>13.11%</td>
<td><0.01</td>
</tr>
<tr>
<td>RCA</td>
<td>192</td>
<td>148</td>
<td>153</td>
<td>3.38%</td>
<td>0.096</td>
</tr>
<tr>
<td>LCx</td>
<td>288</td>
<td>206</td>
<td>241</td>
<td>16.99%</td>
<td><0.01</td>
</tr>
<tr>
<td>Total</td>
<td>960</td>
<td>598</td>
<td>670</td>
<td>12.04%</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Results

- Gated study information for both rest and nitrate enhanced study was also assessed for same 48 patients.

- For gated study total segments evaluated were 960 (LAD: 480, RCA: 192 & LCx: 288).
Results

Comparison of Gated baseline & Nitrate enhanced study

<table>
<thead>
<tr>
<th>Territory</th>
<th>Gated segments</th>
<th>Gated Baseline study (viable segments)</th>
<th>Gated Nitrate study (viable segments)</th>
<th>%age improvement of viability with nitrates</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD</td>
<td>480</td>
<td>224</td>
<td>240</td>
<td>7.14%</td>
<td>0.16</td>
</tr>
<tr>
<td>RCA</td>
<td>192</td>
<td>125</td>
<td>120</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>LCx</td>
<td>288</td>
<td>244</td>
<td>245</td>
<td>0.41%</td>
<td>0.86</td>
</tr>
<tr>
<td>Total</td>
<td>960</td>
<td>593</td>
<td>605</td>
<td>2.02</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Comparison of (SPECT + Gated) baseline & (SPECT + Gated) Nitrate enhanced study

<table>
<thead>
<tr>
<th>Territory</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD</td>
<td>0.001</td>
</tr>
<tr>
<td>RCA</td>
<td>1</td>
</tr>
<tr>
<td>LCx</td>
<td>0.001</td>
</tr>
<tr>
<td>Total</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Results

• Gated image acquisition in addition to SPECT:
 - P value was not significant when gated rest and gated nitrate study was compared.
 - But combination of both (SPECT + Gated) baseline & (SPECT + Gated) nitrate enhanced showed significant p value (0.001).
Literature Review

- Niyaz K, et al. 35 patients (31 M, 4F) hx of MI.
- Baseline and NTG Tc-99m MIBI (2 day protocol).
- 15 had Rest/redistribution TI-201 (3 day protocol).
- Images divided into seven segments for qualitative & semiquantitative analysis.
- > 55% tracer activity compared to max - viable.

Literature Review

- Baseline 168/245 (68.57%) viable, ↑ to 197 (80.40%) in Nitrate MIBI (p=0.001 vs baseline).
- Concordance of viable segments detection between NTG MIBI & redistribution TI-201 found in 100/105 segments (95.24%) for 15 pts.
- Nitrate MIBI SPECT results in improved detection of viable segments & achieves results similar to TI rest/Redistribution.

Literature Review

• **Galli et al** – 54% patients showed significant decrease in mean perfusion defect after sublingual NTG\(^1\).

• **Maurea et al** – 27% perfusion defects showed improvement after NTG\(^2\).

Limitations

1. Lack of Positron emission tomography or thalium-201 for comparison.

2. Need of follow-up studies to see the effect of revascularization.

3. Better attenuation correction.
Conclusion

• Nitrate augmented Tc-99m sestamibi myocardial SPECT significantly improves detection of viable (Hibernating) myocardium.

• Gated images may further improve the accuracy of detection of hibernating myocardium in borderline cases.
Thank You