Clinical Features, Management, and In-hospital Outcomes of Patients with Central obesity Hospitalized with Acute Coronary Syndromes: Results from the Saudi Project for Assessment of Coronary Events (SPACE) Registry

Read Alkutshan M.D, Khalid F. AlHabib, MBBS, FRCPC, Anhar Ullah, M.Sc, Ahmad Hersi, MBBS, FRCPC, Hussam AlFaleh, MBBS, FRCPC, Khalid AlNemer, MBBS, FRCPC, FACC, Shukri AlSaif, MBBS, FRCP, Amir Taraben, MD, FSCAI, Tarek Kashour, MBChB, FRCPC, Layth Mimish MBBS FRCPC, Asif Mailk MD
Background

Waist circumference (WC) is an anthropometric index usually considered a surrogate marker of abdominal fat mass (subcutaneous and intra abdominal).\(^1\)

Barrett-connor EL. Obesity, atherosclerosis, and coronary artery disease. Ann intern med. 1985;103:1010-1019
Background

- Few studies analyzed central obesity impact on prognosis after ACS world wide

- There is no data about Prevalence and Clinical Outcomes of CO in Saudi Arabia and middle east.

- The 1st study.
Objective

• To evaluate the Prevalence and effect of Central obesity on clinical characteristics, treatment regimen and prognosis in patients presenting with acute coronary syndrome (ACS).
Methods

Table 2.

<table>
<thead>
<tr>
<th>Country/Ethnic group</th>
<th>Waist circumference† (as measure of central obesity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europids*</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>≥ 94 cm</td>
</tr>
<tr>
<td>Female</td>
<td>≥ 80 cm</td>
</tr>
<tr>
<td>South Asians</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>≥ 90 cm</td>
</tr>
<tr>
<td>Female</td>
<td>≥ 80 cm</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>≥ 90 cm</td>
</tr>
<tr>
<td>Female</td>
<td>> 80 cm</td>
</tr>
<tr>
<td>Japanese*</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>≥ 85 cm</td>
</tr>
<tr>
<td>Female</td>
<td>≥ 90 cm</td>
</tr>
<tr>
<td>Ethnic South and Central Americans</td>
<td>Use South Asian recommendations until more specific data are available</td>
</tr>
<tr>
<td>Sub-Saharan Africans</td>
<td>Use European data until more specific data are available</td>
</tr>
<tr>
<td>Eastern Mediterranean and Middle East (Arab) populations</td>
<td>Use European data until more specific data are available</td>
</tr>
</tbody>
</table>

Note: Values for women vary based on body mass index (BMI).

Waist circumference is measured at the midpoint between the iliac crest and lowest rib. Patients are categorized as centrally obese or not centrally obese based on their WC (> 94 cm in male, > 80 cm in female) according to the National Heart, Lung, and Blood Institute and International Diabetes Federation.
Analysis of the SPACE

- Total enrolled: 1433
- Central obesity: 1005 (70%)
- No central obesity: 428 (30%)
Demographics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Overall n=1433 n (%)</th>
<th>Central obesity n=1005 (70%) n (%)</th>
<th>No Central obesity n=428 (30%) n (%)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD), years</td>
<td>58(12.93)</td>
<td>56.6(12.16)</td>
<td>55.8(14.68)</td>
<td>0.311</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>1141(79.62)</td>
<td>747(74.33)</td>
<td>394(92.06)</td>
<td><0.001</td>
</tr>
<tr>
<td>Saudi nationality, n (%)</td>
<td>1061(74.04)</td>
<td>753(74.93)</td>
<td>308(71.96)</td>
<td>0.242</td>
</tr>
</tbody>
</table>
Male Patients (1141)

- C.O.
- No C.O.
Prevalence In Female Patients (292)

- 258 (88%): Central obesity
- 12%: No C.O.
Co-morbidities & risk factors

C.O. / NO C.O.

- HTN
- DM
- H.LIPDEMIA
- Current smoker
- FHX CAD
- HX of HF

P < .001
P < .001
P < .001
P < .021
P < .001

C.O.
No C.O.
Clinical presentation

C.O. / NO C.O.

- Killip class > 1
- SBP ≤ 90 mmHg
- HR ≥ 100 beats per minute
Admission diagnosis
C.O. / NO C.O.

- UA: P < .001
- STEMI: P < .001
- NSTEMI: No significant difference
In hospital medications

C.O. / NO C.O.
Diagnostic and therapeutic Intervention
C.O. / NO C.O.

- Coronary angiography: P = .08
- LMD: No significant difference
- SVD: P = .02
- DVD: No significant difference
- TVD: P = .035
- Stents used: No significant difference
- CABG: No significant difference
Discharge medications
C.O. / NO C.O.

![Bar chart showing discharge medications comparison between C.O. and NO C.O. categories.

- Aspirin
- Plavix
- B-Blocker
- ACEI
- ARB
- Statin

Significance levels:
- P = 0.02
- P = 0.01
- P = 0.04]
Cardiovascular events
C.O. / NO C.O.

- RE-MI
- C. SHOCK
- M. BLEEDING
- STROKE

P < .048
In-hospital mortality
C.O. / NO C.O.

P = .066
Conclusions

• Prevalence of central obesity is high among Saudi patients presenting with ACS compared with the developed countries.
• They have high prevalence of cardiovascular risk factors.
• CO patients were more likely to be treated with beta-blockers, ACE inhibitors or ARB, and statins.
• Patients with CO were less likely to have cardiogenic shock, and had a trend toward lower in hospital mortality (1.89 vs 3.50%, p=0.066)
Clinical impact of the study

• Managing CO-related modifiable risk factors in secondary prevention.
Study Limitations

- We cannot exclude the possibility that the impact of WC might have been blurred by differences in measurement techniques at the different sites and centers.

- We cannot exclude the possibility that central obesity may affect the mortality in long-term follow-up.

- Small sample number.
Comparison with International data

<table>
<thead>
<tr>
<th>Variables</th>
<th>Our Study Saudi Arabia</th>
<th>Zeller et al France</th>
<th>KAMIR Study Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>70%</td>
<td>50%</td>
<td>56%</td>
</tr>
<tr>
<td>Gender</td>
<td>> Female</td>
<td>-</td>
<td>> Male</td>
</tr>
<tr>
<td>Age</td>
<td>55</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>DM</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HTN</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Smoking</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Thank you